3.556 \(\int \frac{\cos (c+d x)}{\sqrt{3-4 \cos (c+d x)}} \, dx\)

Optimal. Leaf size=53 \[ \frac{3 F\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{2 \sqrt{7} d}-\frac{\sqrt{7} E\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{2 d} \]

[Out]

-(Sqrt[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(2*d) + (3*EllipticF[(c + Pi + d*x)/2, 8/7])/(2*Sqrt[7]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0501004, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2752, 2662, 2654} \[ \frac{3 F\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{2 \sqrt{7} d}-\frac{\sqrt{7} E\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/Sqrt[3 - 4*Cos[c + d*x]],x]

[Out]

-(Sqrt[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(2*d) + (3*EllipticF[(c + Pi + d*x)/2, 8/7])/(2*Sqrt[7]*d)

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2662

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c + Pi/2 + d*x))/2, (-2*b
)/(a - b)])/(d*Sqrt[a - b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rule 2654

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a - b]*EllipticE[(1*(c + Pi/2 + d*x)
)/2, (-2*b)/(a - b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{\sqrt{3-4 \cos (c+d x)}} \, dx &=-\left (\frac{1}{4} \int \sqrt{3-4 \cos (c+d x)} \, dx\right )+\frac{3}{4} \int \frac{1}{\sqrt{3-4 \cos (c+d x)}} \, dx\\ &=-\frac{\sqrt{7} E\left (\frac{1}{2} (c+\pi +d x)|\frac{8}{7}\right )}{2 d}+\frac{3 F\left (\frac{1}{2} (c+\pi +d x)|\frac{8}{7}\right )}{2 \sqrt{7} d}\\ \end{align*}

Mathematica [A]  time = 0.0667908, size = 60, normalized size = 1.13 \[ \frac{\sqrt{4 \cos (c+d x)-3} \left (3 F\left (\left .\frac{1}{2} (c+d x)\right |8\right )+E\left (\left .\frac{1}{2} (c+d x)\right |8\right )\right )}{2 d \sqrt{3-4 \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/Sqrt[3 - 4*Cos[c + d*x]],x]

[Out]

(Sqrt[-3 + 4*Cos[c + d*x]]*(EllipticE[(c + d*x)/2, 8] + 3*EllipticF[(c + d*x)/2, 8]))/(2*d*Sqrt[3 - 4*Cos[c +
d*x]])

________________________________________________________________________________________

Maple [A]  time = 2.565, size = 158, normalized size = 3. \begin{align*} -{\frac{1}{14\,d}\sqrt{- \left ( 8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-7 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{56\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-7} \left ( 3\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2/7\,\sqrt{14} \right ) -7\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2/7\,\sqrt{14} \right ) \right ){\frac{1}{\sqrt{8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+7}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(3-4*cos(d*x+c))^(1/2),x)

[Out]

-1/14*(-(8*cos(1/2*d*x+1/2*c)^2-7)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/
2*c)^2-7)^(1/2)*(3*EllipticF(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-7*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2)))/(8
*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-8*cos(1/2*d*x+1/2*c)^2+7)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{\sqrt{-4 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(3-4*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/sqrt(-4*cos(d*x + c) + 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-4 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )}{4 \, \cos \left (d x + c\right ) - 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(3-4*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-4*cos(d*x + c) + 3)*cos(d*x + c)/(4*cos(d*x + c) - 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos{\left (c + d x \right )}}{\sqrt{3 - 4 \cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(3-4*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)/sqrt(3 - 4*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{\sqrt{-4 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(3-4*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/sqrt(-4*cos(d*x + c) + 3), x)